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ABSTRACT

As deep neural networks (DNNs) are applied to increasingly challenging prob-
lems, they will need to be able to represent their own uncertainty. Modelling
uncertainty is one of the key features of Bayesian methods. Bayesian DNNs that
use dropout-based variational distributions and scale to complex tasks have re-
cently been proposed. We evaluate Bayesian DNNs trained with Bernoulli or
Gaussian multiplicative masking of either the units (dropout) or the weights (drop-
connect). We compare these Bayesian DNNs ability to represent their uncertainty
about their outputs through sampling during inference. We tested the calibra-
tion of these Bayesian fully connected and convolutional DNNs on two visual
inference tasks (MNIST and CIFAR-10). By adding different levels of Gaussian
noise to the test images in z-score space, we assessed how these DNNs repre-
sented their uncertainty about regions of input space not covered by the training
set. These Bayesian DNNs represented their own uncertainty more accurately
than traditional DNNs with a softmax output. We find that sampling of weights,
whether Gaussian or Bernoulli, led to more accurate representation of uncertainty
compared to sampling of units. However, sampling units using either Gaussian
or Bernoulli dropout led to increased convolutional neural network (CNN) clas-
sification accuracy. Based on these findings we use both Bernoulli dropout and
Gaussian dropconnect concurrently, which approximates the use of a spike-and-
slab variational distribution. We find that networks with spike-and-slab sampling
combine the advantages of the other methods: they classify with high accuracy
and robustly represent the uncertainty of their classifications for all tested archi-
tectures.

1 INTRODUCTION

Deep neural networks (DNNs), particularly convolutional neural networks (CNN), have recently
been used to solve complex perceptual and decision tasks (Krizhevsky et al., 2012; Mnih et al.,
2015; Silver et al., 2016). However, these networks fail to model the uncertainty of their predictions
or actions. Although many networks deterministically map an input to a probabilistic prediction,
they do not model the uncertainty of that mapping. In contrast, Bayesian neural networks (NNs)
attempt to learn a distribution over their parameters thereby offering uncertainty estimates for their
outputs (MacKay, 1992; Neal, 2012). However, these methods do not scale well due to the difficulty
in computing the posterior of a network’s parameters.

One type of method for sampling from the posteriors of these networks is Hamiltonian Monte Carlo
(HMC) (Neal, 2012). These techniques use the gradient information calculated using backprop-
agation to perform Markov chain Monte Carlo (MCMC) sampling by randomly walking through
parameter space. proposed stochastic gadient Langevien dynamcis (SGLD)

Approximate methods, in particular variational inference, have been used to make Bayesian NNs
more tractable (Hinton & Van Camp, 1993; Barber & Bishop, 1998; Graves, 2011; Blundell et al.,
2015). Due in large part to the fact that these methods substantially increase the number of param-
eters in a network, they have not been applied to large DNNs, such as CNNs. Gal & Ghahramani
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(2016) and Kingma et al. (2015) bypassed this issue by developing Bayesian CNNs using dropout
(Srivastava et al., 2014). Dropout is a widely used regularization technique where units are dropped
out of a network with a probability p during training and the output of all unit are multiplied by p
during inference. A similar technique is dropconnect (Wan et al., 2013), which drops network con-
nections instead of units. Gal & Ghahramani (2015) detailed how dropping units was equivalent to
sampling weights from a Bernoulli-based variational distribution and that in order to make a DNN
with dropout Bayesian, sampling should be used during both training and inference. Monte-Carlo
(MC) sampling at inference allows a DNN to efficiently model a distribution over its outputs. One
limitation of the Bayesian dropout method is that it does not model the uncertatiniy of each network
parameter. The uncertainty of a DNN can then be calculated using this probability distribution.
In addition to Bernoulli and Gaussian distributions, there has also been work done using spike-an-
slab distributions (Louizos, 2015), a combination of the two, which has been shown to increase the
quality of linear regression (Ishwaran & Rao, 2005). Interestingly, dropout and dropconnect can be
seen as approximations to spike-and-slab distributions for units and weights, respectively (Louizos,
2015; Gal, 2016; Li et al., 2016). Dropout- and dropconnect-based variational DNNs are dependent
on the dropout probability, which is often used as a hyperparameter. However, work has been done
on automatically learning the dropout probability during training for dropconnect (Louizos, 2015)
using spike-and-slab distributions and Gaussian dropout (Kingma et al., 2015).

In this paper, we investigate how using MC sampling to model uncertainty affects a network’s prob-
abilistic predictions. Specifically, we test if using MC sampling improves the calibration of the
probabilistic predictions made by Bayesian DNNs with softmax output layers. We used variational
distributions based on dropout and dropconnect with either Bernoulli or Gaussian sampling during
both training and inference. Additonally, we propose a formulation of a spike-and-slab variational
distribution based on Bernoulli dropout and Gaussian dropconnect. We find that the spike-and-slab
networks robustly represented their uncertainty like Bayesian dropconnect networks and have the
increased CNN classification accuracy of Bayesian dropout networks. Each of these variational
distributions scale extremely well and make the results of this work applicable to a large range of
state-of-the-art DNNs.

2 METHODS

2.1 BAYESIAN NEURAL NETWORKS

Artificial neural networks (NNs) can be trained using Bayesian learning by finding the maximum
a posteriori (MAP) weights given the training data (Dtrain) and a prior over the weight matrix W
(p(W )):

max
W

p(W |Dtrain) = max
W

p(Dtrain|W )p(W ) (1)

This is usually done by minimizing the mean squared error (MSE) or cross entropy error for ei-
ther regression or classification, respectively, while using L2 regularization, which corresponds to
a Gaussian prior over the weights. At inference, the probability of the test data (Dtest) is then
calculated using only the maximum likelihood estimate (MLE) of the weights (W ∗):

p(Dtest|W ∗) (2)

However, ideally the full posterior distribution over the weights would be learned instead of just the
MLE:

p(W |Dtrain) =
p(Dtrain|W )p(W )

p(Dtrain)
(3)

This can be intractable due to both the difficulty in calculating p(Dtrain) and in calculating the
joint distribution of a large number of parameters. Instead, p(W |Dtrain) can be approximated using
a variational distribution q(W ). This distribution is constructed to allow for easy generation of
samples. Using variational inference, q(W ) is learned by minimizing:
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−
∫

log p(Dtrain|W )q(W )dW +KL(q(W )||p(W )) (4)

Monte-Carlo (MC) sampling can then be used to estimate the probability of test data using q(W ):

p(Dtest) ≈
1

n

n∑
i

p(Dtest|Ŵ i) where Ŵ i ∼ q(W ) (5)
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Figure 1: A visualization of the different variational distributions on a simple neural network.

2.2 VARIATIONAL DISTRIBUTIONS

The number and continuous nature of the parameters in DNNs makes sampling from the entire
distribution of possible weight matrices computationally challenging. However, variational distri-
butions can make sampling easier. In deep learning, the most common sampling method is dropout
with Bernoulli variables. However, dropconnect, which independently samples a Bernoulli for each
weight, and Gaussian weights have also been used. A visualization of the different methods is shown
in Figure 1. All of these methods can be formulated as variational distributions where weights are
sampled by element-wise multiplying the variational parameters V , the n × n connection matrix
with an element for each connection between the n units in the network, by a mask M̂ , which is
sampled from some probability distribution. Mathematically, this can be written as:

Ŵ = V ◦ M̂ where M̂ ∼ p(M) (6)

From this perspective, the difference between dropout and dropconnect, as well as Bernoulli and
Gaussian methods, is simply the probability distribution used to generate the mask sample, M̂ (Fig-
ure 2).

𝑊𝑊�  𝑉𝑉 𝑀𝑀�  

Bernoulli DropConnect 

Gaussian DropConnect 

Bernoulli Dropout 

Gaussian Dropout 
0 
1 

>1 

Spike-and-Slab Dropout 

Figure 2: An illustration of sampling network weights using the different variational distributions.

2.2.1 BERNOULLI DROPCONNECT & DROPOUT

Bernoulli distributions are simple distributions which return 1 with probability p and 0 with prob-
ability (1 − p). In Bernoulli dropconnect, each element of the mask is sampled independently, so
m̂i,j ∼ Bernoulli(p). This sets ŵi,j to vi,j with probability p and 0 with a probability (1 − p).
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In dropout, however, the weights are not sampled independently. Instead, one Bernoulli variable is
sampled for each row of the weight matrix, so m̂i,∗ ∼ Bernoulli(p).

2.2.2 GAUSSIAN DROPCONNECT & DROPOUT

In Gaussian dropconnect and dropout, the elements of the mask are sampled from normal distri-
butions. This corresponds to sampling ŵi,j from a Gaussian distribution centered at variational
parameter vi,j . Srivastava et al. (2014) proposed using Gaussian distribution with a mean of 1 and
a variance of σ2

dc = (1 − p)/p, which matches the mean and variance of dropout when training
time scaling is used. In Gaussian dropconnect, each element of the mask is sampled independently,
which results in m̂i,j ∼ N (1, σ2

dc). In Gaussian dropout, each element in a row has the same random
variable, so m̂i,∗ ∼ N (1, σ2

dc).

2.2.3 SPIKE-AND-SLAB DROPOUT

A spike-and-slab distribution is the normalized linear combination of a ”spike” of probability mass
at zero and a ”slab” consisting of a Gaussian distribution. This spike-and-slab returns a 0 with
probability pspike or a random sample from a Gaussian distribution N (µslab, σ

2
slab). We propose

concurrently using Bernoulli dropout and Gaussian dropconnect to approximate the use of a spike-
and-slab variational distribution by optimizing a lower-bound of the objective function (See Ap-
pendix A). In this formulation, mi,j ∼ bi,∗N (1, σ2

dc), where bi,∗ ∼ Bern(pdo) for each mask row
and σ2

dc = pdc/(1 − pdc). As for Bernoulli dropout, each row of the mask M , mi,∗, is multiplied
by 0 with probability (1 − pdo), otherwise each element in that row is multiplied by a value inde-
pendently sampled from a Gaussian distribution as in Gaussian dropconnect. During non-sampling
inference, spike-and-slab dropout uses the mean weight values and, per Bernoulli dropout, multi-
plies unit outputs by pdo. This differs from the work done by Louizos (2015) and Gal (2016) in
that they used additive Gaussian noise and learn separate means and variances for each weight. In
contrast, we define the variance as a function of the learned weight mean vi,j . Tying the variance of
a weight to its magnitude makes it only beneficial to learn large weights if they are robust to variance
(Wang & Manning, 2013). Although we treat pdo and pdc as a hyperparameters thereby reducing
the space of variational distributions we optimize over, similar methods could potentially learn these
during training (Louizos, 2015; Kingma et al., 2015; Gal, 2016).

Standard Deviation 
0 1 2 3 4 5 

Figure 3: Examples of MNIST images with added Gaussian noise with varying standard deviations.

3 RESULTS

In this paper, we investigate how using MC sampling affects a DNN’s ability to represent the un-
certainty of it’s probabalistic predictions. To test this, we trained several networks differing only
in whether no sampling was performed (baseline DNN and DNN with L2-regularization), sampling
was only performed during training (dropout and dropconnect), or sampling was performed both
during training and inference (MC dropout and MC dropconnect). We used the MNIST and CIFAR-
10 datasets to train networks that sampled from different variational distribution using the above
methods.

For these DNNs, we compared the test classification error, the uncertainty of the softmax output,
and the calibration of the softmax output for each type of sampling and variational distribution. The
test classification error shows how well the probability distribution learned by each DNN models
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Figure 4: The MNIST test classification error, entropy, and calibration of the predictions of the fully
connected networks: NN, NN+L2, Bernoulli DropConnect (BDC) with and without Monte-Carlo
(MC) sampling, Gaussian DropConnect (GDC) with and without MC sampling, Bernoulli Dropout
(BDO) with and without MC sampling, Gaussian Dropout with and without MC sampling, and
spike-and-slab Dropout (SSD) with and without MC sampling.
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Figure 5: The calibration curves for the MNIST test set with and without Gaussian noise of the
softmax outputs of the fully connected networks: NN, NN+L2, Bernoulli DropConnect (BDC) with
and without Monte-Carlo (MC) sampling, Gaussian DropConnect (GDC) with and without MC
sampling, Bernoulli Dropout (BDO) with and without MC sampling, Gaussian Dropout with and
without MC sampling, and spike-and-slab Dropout (SSD) with and without MC sampling.

the data. The uncertainty shows how the probability distribution learned by each DNN is distributed
across classes. A low entropy means that the probability mass is primarily located at a few la-
bels and a high entropy means that the probability mass is distributed across many labels. The
calibration shows how well the probability distribution learned by the DNN models it’s own uncer-
tainty. We evaluated how calibrated a prediction was by the following procedure: (1) We binned
test set predictions by predicted probability. (2) We calculated the percentage of predictions in each
predicted-probability bin that correctly predicted a target label. Perfect calibration means that targets
predicted with probability z are correct in z times 100% of the cases. We therefore (3) calculated
the mean squared calibration error (i.e. the mean across bins of the squared deviations between the
bin-mean predicted probability and the proportion of correct predictions in that bin). We evaluated
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Table 1: MNIST test error for the trained fully connected neural networks with and without Monte-
Carlo (MC) sampling using 100 samples.

Method Mean Error (%) Std. Dev.
NN 1.68 -

NN+L2 1.64 -
Bernoulli DropConnect 1.33 -

MC Bernoulli DropConnect 1.30 0.04
Gaussian DropConnect 1.24 -

MC Gaussian DropConnect 1.27 0.03
Bernoulli Dropout 1.45 -

MC Bernoulli Dropout 1.42 0.03
Gaussian Dropout 1.36 -

MC Gaussian Dropout 1.37 0.03
Spike-and-Slab Dropout 1.23 –

MC Spike-and-Slab Dropout 1.23 0.03

these three measures for the trained networks on the MNIST and CIFAR test set with noise sampled
from Gaussian distributions with varying standard deviations (Figure 3). This tested how well mod-
elled each network’s uncertainty was for the test sets and the regions of input space not seen in the
training set. For dropout and dropconnect, p was set to 0.5, which corresponds to the best value for
regularizing a linear layer Baldi & Sadowski (2013). However in practice, different values for p have
been used Srivastava et al. (2014). We found that 0.5 was a robust choice for different networks,
measures and sampling methods we used. The one exception were the dropconnect parameter used
for spike-and-slab distributions where 0.5 made learning difficult due to the variance during training.
Through validation, we found that using larger values spike-and-slab probabilities (0.75 for the fully
connected and 0.9 for the convolutional) allowed the networks to fit to the training data better while
still maintaining good generalization.

3.1 MNIST

We trained two groups of DNNs, one with a fully connected (FC) architecture and one with a con-
volutional architecture, on digit classification using the MNIST dataset (LeCun et al., 1998). This
set contains 60,000 training images and 10,000 testing images. No data augmentation was used.

3.1.1 FULLY CONNECTED NEURAL NETWORKS

First, we trained DNNs with two FC hidden layers, each with 800 units and ReLU non-linearities.
For the L2-regularized network, an L2-coefficient of 1e-5 was used for all weights. For the dropout
methods, unit sampling was performed after each FC layer. For the dropconnect methods, every
weight was sampled. The classification errors of the FC networks on the MNIST test set are shown
in Table 1. Sampling during learning significantly increased accuracy in comparison to the baseline
NNs, with the dropconnect-based networks being the most accurate. MC sampling at inference did
not significantly increase accuracy. We found that Gaussian dropconnect and spike-and-slab dropout
had the best accuracy.

The classification error, uncertainty, and calibration of the learned probability distributions of each
FC network for varying levels of noise are shown in Figure 4. While not improving accuracy, MC
sampling led to networks that better represent their own uncertainty. As the noise in the test set
was increased, the uncertainty of the networks with MC sampling highly increased, especially when
compared to networks with no sampling at inference. This resulted in better calibrated FC networks
for all levels of noise.

The calibration curves show that sampling only during training, especially when using only dropout,
led to overconfidence through placing too much probability mass on the most predicted label (Fig-
ure 5). In particular, sampling only during training resulted in under-confidence for low predicted
probabilities and over-confidence for high predicted probabilities. By distributing probability mass
over several labels, the DNNs that sampled at inference better represented the uncertainty of their
predictions.
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Figure 6: The MNIST test classification error, entropy, and calibration of the predictions of the
convolutional networks: CNN, CNN+L2, Bernoulli DropConnect (BDC) with and without Monte-
Carlo (MC) sampling, Gaussian DropConnect (GDC) with and without MC sampling, Bernoulli
Dropout (BDO) with and without MC sampling, Gaussian Dropout with and without MC sampling,
and spike-and-slab Dropout (SSD) with and without MC sampling.
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Figure 7: The calibration curves for the MNIST test set with and without Gaussian noise of the
softmax outputs of the convolutional networks: CNN, CNN+L2, Bernoulli DropConnect (BDC)
with and without Monte-Carlo (MC) sampling, Gaussian DropConnect (GDC) with and without
MC sampling, Bernoulli Dropout (BDO) with and without MC sampling, Gaussian Dropout with
and without MC sampling, and spike-and-slab Dropout (SSD) with and without MC sampling.

3.1.2 CONVOLUTIONAL NEURAL NETWORKS

We also trained CNNs on MNIST. Every network had two convolutional layers and a fully-connected
layer (See Appendix B for details). For the L2-regularized network, an L2-coefficient of 1e-5 was
used for all weights. For Bernoulli and Gaussian dropout, dropout was performed after each con-
volutional layer and after the FC layer. For Bernoulli and Gaussian dropconnect, every weight was
sampled. The classification error of the CNNs on the MNIST test set is shown in Table 2. Sampling
during training significantly increased the accuracy for the all of the networks, but especially for the
Gaussian dropout network. However, unlike for the FC networks, the dropout-based methods were
more accurate than the dropconnect-based methods. Unlike for the FC networks, spike-and-slab had

7



Under review as a conference paper at ICLR 2017

Table 2: MNIST test error for the trained convolutional neural networks (CNNs) with and without
Monte-Carlo (MC) sampling using 100 samples.

Method Mean Error (%) Error Std. Dev.
CNN 0.70 -

CNN+L2 0.70 -
Bernoulli DropConnect 0.59 -

MC Bernoulli DropConnect 0.59 0.02
Gaussian DropConnect 0.49 -

MC Gaussian DropConnect 0.49 0.01
Bernoulli Dropout 0.45 -

MC Bernoulli Dropout 0.46 0.01
Gaussian Dropout 0.38 -

MC Gaussian Dropout 0.37 0.01
Spike-and-Slab Dropout 0.43 –

MC Spike-and-Slab Dropout 0.44 0.01

accuracies more similar to Bernoulli dropout, which classified more accurately than Gaussian drop-
connect. MC sampling during inference did not significantly increase the accuracy of the networks.

The classification error, uncertainty, and calibration of the learned probability distributions of each
network for varying levels of noise are shown in Figure 6. As with the FC networks, MC sampling
at inference greatly increased the CNNs’ ability to estimate their own uncertainty, particularly for
inputs that are different from the training set. MC sampling led to increased entropy as inputs became
more noisy, which resulted in better calibration. In particular, this was true of both the Bernoulli and
Gaussian dropconnect networks, which very accurately represented their uncertainty even for highly
noisy inputs. The spike-and-slab CNN had similar robust calibration. The calibration curves show
that not using MC sampling at inference led networks that were under-confident when making low
probability predictions and over-confident when making high probability predictions (Figure 7).

3.2 CIFAR-10

We trained large CNNs on natural image classification using the CIFAR-10 dataset, which contains
50,000 training images and 10,000 testing images (Krizhevsky & Hinton, 2009). The CNNs had
13 convolutional layer followed by a fully connected layer (See Appendix B for details). For L2-
regularization, an L2-coefficient of 5e-4 was used for all weights. For the dropout networks, was
used after each convolutional layer, but before the non-linearities. For the dropconnect networks,
all weights were sampled. During training, random horizontal flipping was used. The classification
error of the CNNs on the CIFAR-10 test set is shown in Table 3. For each variational distribution,
MC sampling significantly increased test accuracy. Also, the that used dropout, including spike-and-
slab, had significantly higher accuracies than the networks that only used dropconnect.

The classification error, uncertainty, and calibration of the learned probability distributions of each
network for varying levels of noise are shown in Figure 8. One of the major differences between
the CIFAR-10 and the MNIST results was that using the layer-wise expectation for dropout did not
produce good models, regardless of what variational distribution was used. Instead, the standard test
time dropout methods led to relatively inaccurate networks with very high output entropy even when

Table 3: CIFAR-10 test error for the trained convolutional neural networks (CNNs) with and without
Monte-Carlo (MC) sampling using 100 samples.

Method Mean Error (%) Error Std. Dev.
CNN 19.63 -

CNN+L2 19.44 -
Bernoulli DropConnect 17.64 -

MC Bernoulli DropConnect 17.29 0.05
Gaussian DropConnect 16.00 -

MC Gaussian DropConnect 15.63 0.04
Bernoulli Dropout 37.47 -

MC Bernoulli Dropout 10.19 0.06
Gaussian Dropout 24.10 -

MC Gaussian Dropout 9.29 0.10
Spike-and-Slab Dropout 18.05 –

MC Spike-and-Slab Dropout 10.44 0.03
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Figure 8: The CIFAR-10 test classification error, entropy, and calibration of the predictions of the
convolutional neural networks: CNN, CNN+L2, Bernoulli DropConnect (BDC) with and with-
out Monte-Carlo (MC) sampling, Gaussian DropConnect (GDC) with and without MC sampling,
Bernoulli Dropout (BDO) with and without MC sampling, Gaussian Dropout with and without MC
sampling, and spike-and-slab Dropout (SSD) with and without MC sampling.
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Figure 9: The calibration curves for the CIFAR-10 test set with and without Gaussian noise of
the softmax outputs of the convolutional neural networks: CNN, CNN+L2, Bernoulli DropConnect
(BDC) with and without Monte-Carlo (MC) sampling, Gaussian DropConnect (GDC) with and
without MC sampling, Bernoulli Dropout (BDO) with and without MC sampling, Gaussian Dropout
with and without MC sampling, and spike-and-slab Dropout (SSD) with and without MC sampling.

no input noise was used. This agrees with the results reported by Gal & Ghahramani (2015)), who
also found that using dropout at every layer can reduce accuracy if MC sampling is not used. How-
ever, these results differ from those of Srivastava et al. (2014). In our experience, deeper networks
with higher regularization (e.g. Bernoulli dropout probabilities closer to 0.5) result in traditional
dropout inference performing significantly worse than MC dropout. As for the MNIST networks,
MC sampling at inference overall greatly increased the CIFAR-10 trained CNNs’ ability to estimate
their own uncertainty when no or little noise was added to the test images.

The classification accuracies and the ability to model uncertainty of the networks with dropconnect
sampling were far more robust to noise than the networks with only dropout. However, the MC
dropconnect networks are significantly less accurate than the MC dropout networks for the CIFAR-
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10 test set when no noise was added. Networks that used traditional dropout inference instead of
sampling were consistently uncertain, regardless of the noise. These networks have worse calibra-
tion than the MC dropout networks at low levels of noise but better calibration than the MC dropout
networks at low levels of noise because they always had high uncertainty. For CIFAR-10, not us-
ing MC sampling resulted in networks that were generally over-confident when making predictions
(Figure 9). However, this was not true for the non-sampling dropout networks when no input noise
was used. In that case, the networks were highly under-confident.

4 DISCUSSION

In this paper, we investigated the ability of MC sampling to improve a DNN’s representation of
its own uncertainty. We did this by training Bayesian DNNs with either multiplicative masking of
the weights (dropconnect) or units (dropout) using Bernoulli, Gaussian, or spike-and-slab sampling.
Based on the results, we draw the following main conclusions:

1. Sampling during both learning and inference improved a network’s ability to represent its own
uncertainty

MC sampling at inference improved the calibration of a network’s predictions. Overall, this im-
provement was particularly large for inputs from outside the training set, which traditional models
classified with high confidence despite not being trained on similar inputs.

2. Sampling weights independently led to networks that best represented their own uncertainty

For all the network architectures and datasets tested, using dropconnect sampling at training and
inference resulted in the best calibrated networks overall. This was true regardless of whether drop-
connect sampling led to the most accurate network. This is in contrast to CNNs with Gaussian
dropout sampling, which were significantly the most accurate and also the worst calibrated of the
networks with sampling both during training an inference

3. Sampling weights independently led to the most accurate FC networks, but sampling units led to
the most accurate CNNs

For the FC networks, using dropconnect, particularly with Gaussian sampling, resulted in the most
accurate networks. However, using dropout led to the most accurate CNNs. A potential cause of
this is the large correlation in the information contained by adjacent elements in an image, which
are often covered by the same convolutional kernel. This could mean that sampling the weights of a
kernel does not provide as much regularization as the dropout methods.

4. Sampling using both Bernoulli dropout and Gaussian dropconnect led to accurate and well cali-
brated networks

Using spike-and-slab dropout, which combines Bernoulli dropout and Gaussian dropconnect, re-
sulted in networks that performed well for all architectures. Spike-and-slab networks had accuracies
similar to the Bernoulli dropout or Gaussian dropconnect depending on which performed better for a
given architecture and task, Gaussian dropconnect for FC networks and Bernoulli dropout for CNNs.
Spike-and-slab networks also were robustly well calibrated similar to all of the other dropconnect
methods.

These scalable methods for improving a network’s representation of its own uncertainty are widely
applicable, since most DNNs already use dropout and getting uncertainty estimates only requires
using MC sampling at inference. We plan to further investigate the use of different variational dis-
tributions. We also plan to evaluate the use of dropout and dropconnect sampling on large recurrent
neural networks. Our results suggest that sampling at inference allows DNNs to efficiently represent
their own uncertainty, an essential part of real-world perception and decision making.
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A DERIVATION OF APPROXIMATE SPIKE-AND-SLAB DROPOUT

For Bayesian inference:

p(Dtest|Dtrain) =

∫
p(Dtest|W )p(W |Dtrain)dW (A.1)

Using variational inference:

p(Dtest) =

∫
p(Dtest|W )q(W )dW (A.2)

Where the variational distribution q(W ) is learned by maximizing the log-evidence lower bound:

log(p(Dtrain)) ≥
∫

log(p(Dtrain|W ))q(W )dW −KL(q(W )||p(W )) (A.3)

For spike-and-slab dropout, as when using Bernoulli dropout, W = B ◦V where bi,∗ ∼ Bern(pdo),
so if we assume independence between the random variables B and V :

log(p(Dtrain)) ≥
∑
B

∫
V

log(p(Dtrain|B, V ))q(B)q(V )dV dB

−KL(q(B)||p(B))−KL(q(V )||p(V ))

(A.4)

For a spike-and-slab distribution, each element of V is independently sampled from a Gaussian
distribution, N (µvi,j , σ

2
vi,j ). As in Gaussian dropconnect, σ2

vi,j = αµ2
vi,j . V can be sampled using

the “reparameterization trick”:

vi,j = N(µvi,j , αµ
2
vi,j ) = g(µvi,j , εi,j) = µvi,j +

√
αµvi,j εi,j (A.5)

where ε ∼ N(0, 1), α = (1− pdc)/pdc, and pdc is the dropconnect keep probability.

This leads to:

log(p(Dtrain)) ≥
∑
B

∫
ε

log(p(Dtrain|B, V )q(ε)q(B)dεdB

−KL(q(B)||p(B))−KL(q(V )||p(V ))

(A.6)

This results in the following minimization objective function:

LµV
:= −

∑
B

∫
ε

log(p(Dtrain|B, V ))q(ε)q(B)dεdB +KL(q(B)||p(B)) +KL(q(V )||p(V )

(A.7)
Using Bern(pdo) as a prior for B leads to a constant KLD of zero. Using a prior of N (0, σ2

p) for
each element of V leads to the following:

KL(q(vi,j)||p(vi,j)) =
(µvi,j − 0)2

2σ2
p

+ log
σp
σvi,j

+
σ2
vi,j

2σ2
p

− 1

2
(A.8)

By using L2 regularization, we are optimizing a lower-bound of the KLD between q(V ) and
N (0, λ−1) by only matching the first moment (i.e. the mean):

LµV
≥ L̃µV

:= −
∑
B

∫
ε

log(p(Dtrain|B, V ))q(ε)q(B)dεdB +
λ

2
µV µ

ᵀ
V (A.9)

where µV is a vector containing each µvi,j and ε is a vector containing each εi,j .

Approximating using Monte Carlo integration for learning (Eq. A.10) and inference (Eq.
A.11):

L̃µV
:≈ − 1

n

∑
(B,ε)

log(p(Dtrain|B, V )) +
λ

2
µV µ

ᵀ
V (A.10)

p(Dtest) ≈
1

n

∑
(B,ε)

p(Dtest|B, V ) (A.11)

where bi,∗ ∼ Bern(pdo) and ε ∼ N(0, 1).
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B CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES

B.1 MNIST

Table B.1: The convolutional neural network (CNN) architecture used for MNIST.

Layer Kernel Size # Features Stride Non-linearity
Conv-1 5x5 32 1 ReLU

MaxPool-1 2x2 32 2 Max
Conv-2 5x5 64 1 ReLU

MaxPool-2 2x2 64 2 Max
FC 1500 500 - ReLU

Linear 500 10 - -

B.2 CIFAR-10

Table B.2: The convolutional neural network (CNN) architecture used for CIFAR-10.

Layer Kernel Size # Features Stride Non-linearity
Conv-1 3x3 64 1 ReLU
Conv-2 3x3 64 1 ReLU

MaxPool-1 2x2 64 2 Max
Conv-3 3x3 128 1 ReLU
Conv-4 3x3 128 1 ReLU

MaxPool-2 2x2 128 2 Max
Conv-5 3x3 256 1 ReLU
Conv-6 3x3 256 1 ReLU
Conv-7 3x3 256 1 ReLU

MaxPool-3 2x2 256 2 Max
Conv-8 3x3 512 1 ReLU
Conv-9 3x3 512 1 ReLU
Conv-10 3x3 512 1 ReLU

MaxPool-4 2x2 512 2 Max
Conv-11 3x3 512 1 ReLU
Conv-12 3x3 512 1 ReLU
Conv-13 3x3 512 1 ReLU

MaxPool-5 2x2 512 2 Max
FC 512 512 - ReLU

Linear 512 10 - -
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